OR Annual report 2021 Appendices

Release of geothermal water from the Nesjavellir and Hellisheidi geothermal power plants. Groundwater monitoring.

Table of contents

Volume of geothermal water from the Nesjavellir Geothermal Power Plant by release route	1
Volume of geothermal water from the Hellisheidi Geothermal Power Plant by release route	2
Geothermal fluids discharged via overflows at the Hellisheidi Geothermal Power Plant and in Hverahlid 2021	4
Chemical composition of geothermal water and heated groundwater for space heating from geothermal power plants in the Hengill area	5
Chemical composition of geothermal water and heated groundwater from the Hellisheidi and Nesjavellir Geothermal Power Plants	6
Chemical composition of groundwater in wells around the Hellisheidi Power Plant in 2021	7

Cover photo: Gretar Ívarsson

Volume of geothermal water from the Nesjavellir Geothermal Power Plant by release route

Geothermal water (thous.m³/year) from Nesjavellir Geothermal Power Plant 2013-2021 by release route.

Volumes are rounded to thousands of tonnes.

Volume of geothermal water from the Hellisheidi Geothermal Power Plant by release route 2007 – 2021

Until September 2011, the largest part of geothermal water was reinjected through wells in Gráuhnúkar. Geothermal water from the plant increased when the Sleggjan plant was launched in autumn 2011, but the reinjection field at Húsmúli was then put into full operation. Since then, the geothermal water from the plant has increased. Reinjection in discontinued production wells within the production field started in 2014 and in boreholes in Threngsli in 2016.

Year	Seperated water via overflow	Geothermal water in Gráuhnúkar	Geothermal water in Húsmúli	Geothermal water in production field	Total geothermal water		
	thous. tons/year	thous. tons/year	thous. tons/year	thous. tons/year	thous. tons/year		
2007	215	6,502			6,718		
2008	483	5,439	1,123		7,045		
2009	2,050	5,335	1,382		8,767		
2010	572	5,684	1,826		8,082		
2011	506	5,374	6,461		12,341		
2012	163	5,224	13,358		18,745		
2013	233	7,620	11,733		19,586		
2014	1,024	8,281	11,982	860	22,147		
2015	1,870	8,422	10,107	3,803	24,202		
2016	1,025	8,585	7,831	4,213	21,654		
2017	1,699	8,506	6,001	10,147	26,353		
2018	447	7,982	7,611	12,625	28,665		
2019	919	6,409	7,445	11,206	25,980		
2020	21	10,610	6,558	9,394	26,583		
2021	470	11,797	8,398	8,898	29,562		
Total	11,697	111,770	101,816	61,146	286,429		

Volumes are rounded to thousands of tons

Geothermal fluids discharged via overflows at the Hellisheidi Geothermal Power Plant and in Hverahlid 2021

The reinjection utility is vulnerable to any operational changes and approximately 1.2% of produced geothermal water at Hellisheidi Power Plant was released via overflow. Licensors have been kept informed on the situation, on actions available at any given time and of the ongoing projects to increase the reception of the reinjection utility. Overflow in Hverahlid was inactive throughout 2021.

Date	Type of disturbance	Maximum flow [l/s]
Hellisheidi power plant		
January 19 th & 20 th	Maintenance	60
May 6 th & 7 th	Maintenance	340
August 29 th	Maintenance	39
September 10 th	Maintenance	54

Chemical composition of geothermal water and heated groundwater for space heating from geothermal power plants in the Hengill area

Typical concentrations (μ g/L) of several trace elements in geothermal water (separated water) and heated groundwater (for space heating) from the Hellisheidi and Nesjavellir geothermal power plants and their maximum permissible concentrations (μ g/L) for potable water. When the chemical content of separated water is compared to potable water standards, one can see that the concentration of arsenic in separated water from Nesjavellir was over eight times the maximum for potable water and in separated water from Hellisheidi, it was almost seven times the maximum. The concentration of selenium in separated water in Hellisheidi was also slightly over the limit. The concentration of other substances in separated water and heated groundwater is lower than the given limits for potable water.

		Max.		HELLISHEIDI		NESJAVELLIR				
Trace element	Unit	value for potable water	Separated water	Condensed water	Heated groundwater	Separated water	Condensed water	Heated groundwater		
Arsenic (As)	µg/L	10	66.10	< 0.05	0.08	82.30	1.54	1.99		
Barium (Ba)	µg/L	700	0.25	0.06	0.56	0.26	0.10	0.72		
Cadmium (Cd)	µg/L	5	< 0.002	< 0.002	< 0.002	< 0.002	0.01	< 0.002		
Cobalt (Co)	µg/L	*	< 0.005	< 0.005	< 0.005	0.01	0.03	0.01		
Chrome (Cr)	µg/L	50	0.05	0.02	0.08	0.11	0.20	0.32		
Copper (Cu)	µg/L	2,000	1.23	< 0.1	0.44	10.80	13.10	0.24		
Mercury (Hg)	µg/L	1	< 0.002	< 0.002	< 0.002	0.019	< 0.002	< 0.002		
Manganese (Mn)	µg/L	50	0.39	0.21	0.21	1.04	13.90	0.09		
Molybdenum (Mo)	µg/L	*	8.05	0.27	0.19	5.31	0.06	0.44		
Nickel (Ni)	µg/L	20	0.11	< 0.05	0.41	0.59	8.65	< 0.05		
Phosphorus (P)	µg/L	5,000	< 1	1.42	45.40	< 1	2.96	46.50		
Lead (Pb)	µg/L	10	0.02	< 0.01	0.03	0.40	0.37	< 0.01		
Antimony (Sb)	µg/L	5	2.23	0.06	< 0.01	1.93	0.04	0.06		
Selenium (Se)	µg/L	10	12.90	0.42	< 0.3	1.49	< 0.3	1.40		
Strontium (Sr)	µg/L	*	< 10	< 2	10.35	< 10	< 2	19.70		
Titanium (Ti)	µg/L	*	0.07	0.01	0.03	0.83	0.24	0.03		
Vanadium (V)	µg/L	*	3.19	0.53	9.32	1.94	0.10	21.20		
Zinc (Zn)	µg/L	3,000	1.45	0.53	5.66	10.90	85.70	1.85		

* Maximum limits not specified in the potable water regulation

Chemical composition of geothermal water (separated water) and heated groundwater (for space heating) from the Hellisheidi and Nesjavellir Geothermal Power Plants and their maximum permissible concentrations (mg/kg) for potable water

When the chemical content of separated water is compared to potable water standards, one can see that in separated water from the Hellisheidi and Nesjavellir Geothermal Power Plants, the concentration of potassium is around three times higher than permissible levels for potable water. The concentrations of sodium and fluoride in the separated water from Hellisheidi also exceeds the limit. Concentrations of aluminium in separated water from both plants are nine to ten times over the limit for potable water. Iron concentrations in condensed water in Nesjavellir is three times over the limit and is also slightly over the limit in separated water. Concentrations of other chemicals in condensate and heated groundwater from both power plants is lower than the given limits for potable water.

Ohamiaal and		Max.		HELLISHEIDI		NESJAVELLIR			
physiological factors	Unit	value for potable water	Separated water	Condensed water	Heated groundwater	Separated water	Condensed water	Heated groundwater	
Acidity	pН		9.49	6.2	8.08	8.32	5.4	8.46	
Т (рН)	°C		21.0	37.5	18	42.3	11.8	20.6	
Carbon dioxide (CO ₂)	mg/kg	*	20.3	3.1	22.6	17.4	19.1	43.3	
Hydrogen sulphide (H ₂ S)	mg/kg	*	20.8	-	0.21	43.7	39.7	0.7	
Silica (SiO ₂)	mg/kg	*	723.4	0.8	23.7	725.1	0.56	43.1	
Sodium (Na)	mg/kg	200	213.4	0.3	5.85	171.1	0.4	18.0	
Potassium (K)	mg/kg	12	39.2	0.03	0.76	32.4	0.2	2.41	
Calcium (Ca)	mg/kg	100	0.54	0.21	5.10	0.43	0.13	10.62	
Magnesium (Mg)	mg/kg	50	0.014	0.10	2.93	0.004	0.01	5.26	
Iron (Fe)	mg/kg	0.2	0.020	0.066	0.002	0.022	0.604	0.006	
Aluminium (Al)	mg/kg	0.2	1.79	0.004	0.002	1.96	0.01	0.11	
Sulphate (SO ₄)	mg/kg	200	16.5	1.92	3.61	12.07	2.21	15.69	
Chloride (Cl)	mg/kg	*	203.5	0.2	7.25	153.5	0.8	15.95	
Fluoride (F)	mg/kg	1.5	1.53	0.05	0.09	1.33	0.06	0.16	

* Maximum limits not specified in the potable water regulation

Chemical composition of groundwater in wells around the Hellisheidi Power Plant in 2021

Well			HK-07	HK-12	KH-50	KH-03	KH-12	KH-17	KH-52	KH-05	KH-06	HU-1	HK-14	HK-28
Groundwate	r flow			Selvogur flow		Selvogur / Thingvellir flows			Thingvellir flow				Ölfus flow	
Sample no.			21-5221	21-5220	21-5289	21-5235	21-5185	21-5234	21-5288	21-5231	21-5224	21-5233	21-5223	21-5184
Date			7.9.2021	7.9.2021	7.12.2021	23.9.2021	30.6.2021	23.9.2021	6.12.2021	15.9.2021	8.9.2021	16.9.2021	8.9.2021	30.6.2021
Chemical properties	Unit	Maximum value												
Acidity	рН		7.48	8.31	7.20	6.98	7.53	7.10	6.65	7.78	6.82	7.67	8.07	7.07
Т (рН)	°C		21.9	22.0	21.7	16.5	22.8	19.0	21.9	22.0	22.0	21.9	22.1	22.7
CO ₂	mg/kg	*	53.0	39.5	68.6	192.7	30.0	219.0	26.4	45.0	32.9	24.0	21.1	76.1
F	mg/kg	1.5	0.098	0.083	0.103	0.195	0.113	0.136	0.071	0.092	0.063	0.093	0.065	0.265
CI	mg/kg	*	8.85	9.25	8.84	5.43	9.89	5.55	5.43	7.75	6.68	7.89	7.55	16.80
SO ₄	mg/kg	200	14.49	11.53	27.59	22.47	14.39	8.53	9.85	4.05	2.45	2.45	2.30	27.77
Ca	mg/kg	100	9.23	11.06	8.24	33.87	6.1	30.05	5.7	9.44	4.21	4.18	3.78	12.85
Fe	mg/kg	0.2	0.02	0.21	0.01	0.07	0.00	0.01	0.014	0.01	0.31	0.005	0.010	0.023
К	mg/kg	12	0.81	1.02	1.09	2.46	1.06	2.79	0.82	0.79	0.48	0.75	0.71	4.68
Mg	mg/kg	50	9.86	5.41	16.24	12.86	3.46	12.30	2.81	5.83	3.80	2.47	2.78	4.34
Na	mg/kg	200	9.49	9.15	9.19	22.54	8.21	29.36	5.30	7.26	4.95	5.60	6.17	28.53
SiO ₂	mg/kg	*	29.45	22.51	44.48	61.23	32.00	68.98	21.35	28.66	15.54	23.13	16.03	92.96
Al	µg/kg	200	6.94	114.00	3.71	4.67	10.20	5.20	1.68	0.74	2.16	1.08	10.10	8.85
As	µg/kg	10	0.09	< 0.05	0.07	0.06	0.36	0.12	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.31
Ва	µg/kg	700	0.36	1.52	0.63	1.09	0.92	2.27	1.34	0.21	0.83	0.46	0.23	0.71
Cd	µg/kg	5	0.012	0.004	0.0352	< 0.002	0.00399	0.0469	0.0236	0.011	0.013	0.0039	0.00379	< 0.002
Co	µg/kg	*	0.02	0.12	0.015	< 0.005	0.006	0.015	0.025	0.01	0.05	0.007	0.012	0.016
Cr	µg/kg	50	1.71	5.43	0.25	0.79	0.48	0.89	0.87	0.69	2.78	0.46	3.31	0.49
Cu	µg/kg	2,000	1.83	1.22	3.32	0.17	0.17	4.97	1.84	0.255	2.94	0.29	0.77	1.88
Hg	µg/kg	1	< 0.002	0.003	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Mn	µg/kg	50	0.95	6.46	0.82	1.55	0.18	2.12	2.06	1.00	2.81	0.245	0.56	7.78
Мо	µg/kg	*	0.79	0.47	0.15	0.34	0.26	0.16	0.21	0.19	0.09	0.15	0.13	5.48
Ni	µg/kg	20	0.10	2.86	1.39	2.98	< 0.05	1.50	0.90	0.26	0.24	< 0.05	< 0.05	4.87
Pb	µg/kg	10	0.13	0.05	0.2	< 0.01	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.9
P	µg/kg	5,000	48.8	32.8	57.9	77.8	46.5	72.8	2.9	62.7	7.50	47.4	19.5	90.3
SD	µg/kg	5	0.142	0.078	0.0594	0.013	1.8	0.0203	0.134	0.035	0.031	0.021	0.035	0.035
Se	µg/ĸg	10	0.85	0.473	0.466	0.494	0.597	0.455	0.422	< 0.3	< 0.3	< 0.3	< 0.3	0.747
Sr	µg/kg	*	21.1	21.8	20.6	67.0	14.5	67.6	13.0	15.4	8.9	8.2	8.6	37.5
11 M	µg/kg	*	0.114	8.00	0.158	0.019	0.122	12.0	0.046	0.035	0.203	0.031	0.156	0.198
v Zn	µg/kg	3 000	67.5	23.0	3.0	2.1	9.3	12.0	1.0	30.1	2.0 23.3	1.2	4.0	40.0
Z 11	µy/ry	3,000	07.5	12.5	32.2	2.1	0.2	120.0	00.0	39.1	20.0	23.0	11.4	20.0

* Maximum value not specified in Icelandic regulation

The impact of the Hellisheidi Power Plant on groundwater is closely monitored in surveillance wells at and around the plant. Samples are collected to analyse overall chemical content and trace elements. in addition to measuring their temperature. conductivity and acidity. The concentration of dissolved solids is far below the limits set for potable water.