OR Annual report 2021 Appendices

Sewage treatment, overflows and sea water quality

Table of contents

OR and subsidiaries' area of operations	1
Sea water quality along Reykjavík's coastline and on the periphery of dilution areas in Faxafloi bay	2
Sea water quality along Akranes' coastline	2
Chemicals and trace elements from sewage treatment plants in Reykjavik 2021	3
Release from Veitur utilities' sewerage systems	4
Release via overflows in Reykjavik 2018-2021	4
Emergency overflow activity in Reykjavik 2019-2021	5
Release via overflows in West Iceland 2021	6

Cover photo: Þorsteinn Þorgeirsson

OR and subsidiaries' area of operations

Sea water quality along Reykjavík's coastline and on the periphery of dilution areas in Faxafloi bay

The percentage (%) of samples below limits, i.e., less than 100 in a 100 ml sample at the coast by Reykjavik and less than 1000 in a 100 ml sample at the periphery of dilution areas for the period 2015-2021. In 2021 sample analysis revealed that over 90% of samples were below the permissible values.

Samples	Heat-tolerant microb	es	2015	2016	2017	2018	2019	2020	2021
At the coast and by the discharge point									
RDEP and Veitur Utilities	Faecal coliforms	%	92	85	81	87	90	93	87
	Enterococci	%	96	95	96	96	99	97	93
At the periphery of dilution areas									
Veitur Utilities	Faecal coliforms	%	97	100	100	97	100	100	100
	Enterococci	%	100	100	100	100	100	100	100

RDEP: Reykjavik's Department of Environment and Planning

Sea water quality along Akranes' coastline

In 2021, from February to October, additional samples were collected along Akranes' coastline. 71 sample were collected for each category of microbes.

Samples	Heat-tolerant micro	bes	2021
At the coast			
Voitur I Itilition	Faecal coliforms	%	86
venur Otinities	Enterococci	%	93

Chemicals and trace elements from sewage treatment plants in Reykjavik 2021

Discharge of pollutants (mg/l) from sewage treatment plants in Reykjavik in 2020. The average flow in Klettagardar was 1,452 l/sec and in Ananaust 1,094 l/sec. Calculations are based on results of chemical and trace element analysis from treated sewage samples, collected four times a year for nitrogen and phosphorus analysis and twice a year for trace element analysis.

					-
	March	June September December		Average	
	mg/l	mg/l	mg/l	mg/l	mg/l
Klettagardar					
Total nitrogen (N)	7.1	10.8	11.8	6.3	9.9
Total phosphorus (P)	0.9	0.8	1.2	0.9	1.1
Arsenic (As)	<0.05			<0.05	Below the detection limit
Cadmium (Cd)	<0.001			<0.001	Below the detection limit
Chromium (Cr)	<0.005			<0.005	Below the detection limit
Copper (Cu)	<0.005			0.0113	Below or near the detection limit
Mercury (Hg)	<0.0005			<0.0005	Below the detection limit
Nickel (Ni)	<0.005			<0.005	Below the detection limit
Lead (Pb)	<0.005			<0.005	Below the detection limit
Silver (Ag)	<0.01			<0.01	Below the detection limit
Zinc (Zn)	0.03			0.06	0.05
Ananaust					
Total nitrogen (N)	12.0	15.8	14	9.0	12.5
Total phosphorus (P)	1.6	2.0	1.84	1.4	1.8
Arsenic (As)	<0,05			<0,05	Below the detection limit
Cadmium (Cd)	<0,001			<0,001	Below the detection limit
Chromium (Cr)	<0,005			<0,005	Below the detection limit
Copper (Cu)	<0,005			0.01	Below or near the detection limit
Mercury (Hg)	<0,0005			<0,0005	Below the detection limit
Nickel (Ni)	<0,005			<0,005	Below the detection limit
Lead (Pb)	<0,005			<0,005	Below the detection limit
Silfur (Ag)	<0,01			<0,01	Below the detection limit
Zinc (Zn)	0.050			0.04	0.046

- When both samples collected are below the detection limits, the column "mean value" states "below the detection limit".

Release from Veitur utilities' sewerage systems

According to regulation no. 798/1999 on Sewerage systems and Sewage, overflow in the sewerage system may be active for up to 5% of the time of the year, or when the sewage mixed with hot water from district heating utilities or rainwater is at least on a ratio of 1:5.

Release via overflows in Reykjavik 2018-2021

Major maintenance in October and November 2021 at the Klettagardar sewage treatment plant caused emergency overflows to be active for 730 hours during the year. Emergency overflows at Faxaskjol, Klettagardar and Ingolfsstraeti were inactive throughout the year

Emergency overflow activity in Reykjavik 2019-2021

In 2020, the discharge of wastewater via overflows in West Iceland was within Veitur Utilities' established limits, apart from Thorsteinsgata in Borgarnes. According to regulation no. 798/1999 on Sewerage systems and Sewage, overflow in the sewerage system may be active for up to 5% of the time of the year, or when the sewage mixed with hot water from district heating utilities or rainwater is at least on a ratio of 1:5.

6