OR Annual report 2021

Appendices

Greenhouse gas emissions, global warming potentials and coefficients for calcuations

Table of contents

Greenhouse Gas Emissions from Reykjavik Energy 2018-2021	1
Global Warming Potential, other Coefficients for Calculating Emissions and Sequestration in CO ₂ equivalents	2

Cover photo: Gretar Ívarsson

Greenhouse Gas Emissions from Reykjavik Energy 2018-2021

The greenhouse gasses accounted for are carbon dioxide (CO₂), methane (CH₄), sulphur hexafluoride (SF₆), tetrafluorethane (HFC-134a) and nitrous dioxide (N₂O). Greenhouse gas emissions from ON Power's geothermal power plants in Nesjavellir and Hellisheidi are based on their operations along with drilling of makeup wells in the geothermal fields. Veitur Utilities' emissions from its supply and distribution system are due to the operation of backup generators. In 2021 the emission of carbon dioxide from Hellisheidi and Hverahlid increased compared to 2017 while it was reduced in Nesjavellir. Methane emissions from both power plants increased in the same period. Greenhouse gas emissions from the vehicle fleet were reduced from previous years. Sulphur hexafluoride (SF₆) is used as insulating gas in high-voltage electrical equipment in ON Power's power plants and Veitur Utilities' supply and distribution system. SF6 is also used in tracer flow test (TFT) measurements of high-temperature production wells.

LOFTTEGUND	UPPRUNI	EINING	2018	2019	2020	2021
	Nesjavellir	tonn	15,000	15,500	14,500	12,900
	Hellisheidi and Hverahlid	tonn	28,000	31,500	34,300	30,900
	Low-temperature geothermal fields	tonn	0	0	0	0
	Supply and distribution system	tonn	1	2	2	2
	Vehicle fleet (CO ₂ equivalents)	tonn	500	470	450	400
Carbon dioxide (CO ₂)	Flights, international and domestic (CO ₂ equivalents)	tonn	75	100	20	20
	Employee transport to and from work (CO ₂ equivalents)	tonn	120	110	40	70
	Office waste for landfilling (CO2 equivalents)	tonn	14	10	10	10
	Worksite waste for landfilling (CO2 equivalents)	tonn	320	310	370	245
	Organic waste for compost (CO2 equivalents)	tonn	5	8	8	15
	Total CO ₂	tonn	44,035	48,010	49,700	44,562
Methane (CH₄)	Nesjavellir	kg	30,000	35,000	50,000	45,000
	Hellisheidi and Hverahlid	kg	55,000	55,000	80,000	75,000
	Total CH₄	kg	85,000	90,000	130,000	120,000
Nitrous oxide (N₂O)	Supply and distribution system	kg	0	0	0	0
	Total N₂O	kg	0	0	0	0
Tetrafluorethane (HFC-134a)	Supply and distribution system	kg	15	15	15	15
	Total HFC-134a	kg	15	15	15	15
Sulphur hexafluoride (SF ₆) ¹	Nesjavellir	kg				
	Hellisheidi	kg				
	Tracer flow tests (TFT) in the Hengill area	kg	0.09	0.07	0.03	0.03
	Supply and distribution system	kg	1	1	1	2.2
	Total SF ₆	kg	1.09	1.07	1.03	2.23

¹Total quantity of SF₆ in Veitur utilities' electronic equipment is approx. 4.3 tonnes and approx. 1 tonne in supplies. Total quantity of SF₆ in ON Power's electronic equipment is approx. 50 kg. RE's R&D holds approx. 0.4 kg of SF₆ in supplies.

Information for global warming potential (GWP) of greenhouse gasses, see: <u>http://www.ipcc.ch/pdf</u> /assessmentreport/ar5/wg1/WG1AR5_Chapter08_FINAL.pdf</u> and in an annex on conversion coefficients

Global Warming Potential, other Coefficients for Calculating Emissions and Sequestration in CO₂ equivalents

Global warming potential coefficients for the most commonly emitted greenhouse gasses, published by the International Panel of Climate Change, IPCC1, the UK government2, the International Civil Aviation Organization, ICAO3, and Icelandic coefficients that are used for calculating CO2-equivalents in emissions and sequestration4,5,6.

100-YEAR GLOBAL WARMING POTENTIAL (GWP) FOR CALCULATING CO₂-EQUIVALENCIES OF GREENHOUSE GASSES

GREENHOUSE GAS	COEFFICIENT	SOURCE
Carbon dioxide (CO ₂)	1	
Methane (CH ₄)	28	
Nitrous oxide (N ₂ O)	265	IPCC ¹
Tetrafluorethane (HFC-134a)	1,300	
Sulphur hexafluoride (SF ₆)	23,500	

EMISSION FACTORS FOR CALCULATION OF CO2 EMISSIONS/SEQUESTATION					
TYPE OF EMISSION / SEQUESTRATION	ENERGY SOURCE/ SEQUESTRATION	UNITS	COEFFICIENT	SOURCE	
Transportation / Backup power	Gasoline	kg CO₂/L fuel	2.20	Department for Business,	
	Diesel	kg CO ₂ /L fuel	2.63	Strategy ²	
	Methane	kg CO ₂ /L fuel	0.28	Laboratory ³	
	Flight emissions	See calculator ⁴	Variable ⁵	International Civil Aviation Organization (ICAO) ⁴	
Sequestration of CO_2 in Nature	Forestry	t CO ₂ /ha ⁶	6.3	Joel Chales Owona 2019	
	Land reclamation	t CO ₂ /ha ⁷	2.75	National Inventory Report 2008	
Emisssion Mitigation	Wetland reclamation	t CO ₂ /ha ⁸	20	Gudmundsson, J., & Oskarsson, H. 2014.	

¹ IPCC, 2013: *Climate Change 2013: The Physical Science Basis*. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. *https://www.ipcc.ch/report/ar5/wg1/* ² Emission factors for transportation and waste: UK Department for Business, Energy & Industrial Strategy. <u>https://www.gov.uk/government/collections/government-conversion-factors-for-company-reporting</u>

³Mintz, M., et al. Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model. No. ANL/ESD/10-3. Argonne National Lab.(ANL), Argonne, IL (United States), 2010.

⁴ Calculator for flight emissions: http://www.icao.int/environmental-protection/CarbonOffset/Pages/default.aspx Um On premises of calculator: http://www.icao.int/environmentalprotection/

CarbonOffset/Documents/Methodology_ICAO_Carbon_Calculator_v9_2016.pdf

⁵Coefficient factors depend on fuel type, length of flight, type of aircraft, weight of cargo, etc

⁶ Joel Chales Owona 2019. Áhrif nýskógræktar á kolefnisbindingu í jarðvegi á Íslandi.

https://skemman.is/handle/1946/34470

⁷ National Inventory Report 2008,

https://www.ust.is/library/Skrar/Atvinnulif/Loftslagsbreytingar/ICELAND_NIR_2010.pdf

⁸Gudmundsson, J., & Oskarsson, H. 2014. *Carbon dioxide emission from drained organic soils in West-Iceland*. Soil carbon sequestration for climate food security and ecosystem services pp. 155-159.

EMISSION FACTORS FOR WASTE EMISSION CALCULATIONS				
Waste Classification from Waste Collectors	Assumed Disposal Method	UK Emission Factors ⁹		
General waste	Landfill	0.586		
Bulk waste	Landfill	0.099		
Asbestos	Landfill	0.001		
Sludge (solid constituents from sewage)	Landfill	0.271		
Green bin	Combustion	0.021		
Metals	Closed-Loop	0.021		
Timber – unpainted	Landfill	0.828		
Timber – painted	Landfill	0.828		
Garden waste	Landfill	0.579		
Glass and minerals	Open-Loop	0.021		
Plastic	Combustion	0.021		
Corrugated cardboard	Closed-Loop	0.021		
Mixed cardboard and paper	Closed-Loop	0.021		
Office paper	Closed-Loop	0.021		
Newspapers and magazines	Closed-Loop	0.021		
Organic waste	Landfill	0.579		
Unknown substances	Landfill	0.586		
Light bulbs	Landfill	0.016		
Batteries	Landfill	0.016		
Car batteries	Landfill	0.016		
Electronic equipment	Landfill	0.016		
Paint and print waste	Landfill	0.099		
Oil and oil contaminated waste	Landfill	0.099		
Solvents	Landfill	0.099		
Organic pollutants, cooking oil	Landfill	0.099		
Inorganic pollutants	Landfill	0.099		

⁹Emission factors for waste: UK Department for Business, Energy & Industrial Strategy. https://www.gov.uk/government/collections/government-conversion-factors-for-company-reporting